A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis.

نویسندگان

  • Carl Andre
  • John E Froehlich
  • Matthew R Moll
  • Christoph Benning
چکیده

Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis seedlings deficient in a plastidic pyruvate kinase are unable to utilize seed storage compounds for germination and establishment.

Catabolism of storage reserves and biosynthesis of metabolites necessary for growth are essential for seed germination and establishment. An Arabidopsis (Arabidopsis thaliana) mutant (pkp1) deficient in plastidic pyruvate kinase (PK(p)) and unable to accumulate storage oil to the same extent as the wild type shows delayed germination and seedling establishment dependent on an exogenous sugar su...

متن کامل

Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana.

Restriction of phosphoenolpyruvate (PEP) supply to plastids causes lethality of female and male gametophytes in Arabidopsis thaliana defective in both a phosphoenolpyruvate/phosphate translocator (PPT) of the inner envelope membrane and the plastid-localized enolase (ENO1) involved in glycolytic PEP provision. Homozygous double mutants of cue1 (defective in PPT1) and eno1 could not be obtained,...

متن کامل

Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis.

Major storage reserves of Arabidopsis (Arabidopsis thaliana) seeds are triacylglycerols (seed oils) and proteins. Seed oil content is severely reduced for the regulatory mutant wrinkled1 (wri1-1; At3g54320) and for a double mutant in two isoforms of plastidic pyruvate kinase (pkpbeta(1)pkpalpha; At5g52920 and At3g22960). Both already biochemically well-characterized mutants were now studied by ...

متن کامل

The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds.

Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA...

متن کامل

Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase.

Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. Previously, the cloning of a PDHK cDNA from Arabidopsis thaliana and the effects of constitutively down-regulating its expression on plant growth and development has been reporte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2007